
cq

Z
).-

<

<
Z

r

)

NASA "IN D-I072

./ ,/;

TECHNICAL NOTE

D-1072

HEAT TRANSFER AT THE REATTACHMENT ZONE

OF SEPARATED LAMINAR BOUNDARY LAYERS

By Paul M. Chung and John R. Viegas

Ames Research Center

Moffett Field, Calif.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON September 1961





IH

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-I072

HEAT TRANSFER AT T_ REATTACHMENT ZONE

OF SEPARATED LAMINAR BOUNDARY LAYERS

By Paul M. Chung and John R. Viegas

SUMMARY

The flow and heat transfer are analyzed at the reattachment zone of

two-dimensional separated laminar boundary layers. The fluid is considered

to be flowing normal to the wall at reattachment. An approximate expres-

sion is derived for the heat transfer in the reattachment region and a

calculated value is compared with an experimental measurement.

INTRODUCT!0N

The mechanism of heat transfer through separated regions is very

complicated and little understood. Chapman in reference I first analyzed

this problem and obtained an estimate of the average heat transfer in this

region. A survey of the literature reveals that no local heat-transfer

analysis has been done for a Chapman type separated region. Reference 2

indicates that the complete physical problem is too complex to be ade-

uately described by a simple flow model. Existing experimental work
ref. 3) shows that the maximum heat transfer in a separated region occurs

at the reattachment point. References i and 4 indicate that one may be

able to analyze the flow and heat transfer near this point. This paper

is concerned with heat transfer in the reattachment zone for normal reat-

tachment of a two-dimensional separated laminar boundary layer. Figures
I and 2 show the model considered.

The flow approaching the reattachment zone is considered inviscid but

rotational. The viscous effect is assumed to be confined to the boundary

layer which develops along the x axis. The partition into inviscid and

viscous regions is justified because, as will be seen subsequently, the

vorticity in the inviscid region is smaller than that in the boundary layer

by an order of magnitude. In the following analysis the fluid in the

inviscid region is assumed to be incompressible and a closed-for_ solution

of the flow field is developed. This solution is then used to solve the

boundary-layer equations for heat transfer along the x axis.
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NOMENC_

total enthalpy

function defined by equation (15)

length of reattachment zone

length of separated mixing layer

qwPrZ
Nusselt number,

(he - hw)_ e

pressure

Prandt i number

heat transfer to the wall per unit area per unit time

nose radius of a hypersonic blunt body

PeUe
Reynolds number,

be

variable defined by equation (13)

x component of velocity

streamwise velocity at the outer edge oJ' mixing layer

y component of velocity

v(o,L)

x

distance along the wall from reattachme_t point

particular value of x greater than L but still near the

reattachment point

Y
L

distance in direction normal to wall

variable defined by equation (13) or function defined by equation

(AT)
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0

c_,X

¢

parameter defined by equations (3) and (23)

dynamic viscosity

dummy variable

density

Laplace transforms defined by equations (13)

stream function

vorticity

Subscripts

e

r

t

w

outer edge of mixing layer

average value for reattachment zone (0 < x < L)

reattachment point

wall

INVISCID FLOW REGION

The flow approaching the reattachment zone shall be considered

invlscid, incompressible, but rotational. Figure 2 shows the flow model

studied. For this case, the distribution of the streamlines on the x-y

plane is given by the equation

v_$ = _n(¢) (1)

where ¢ is the usual stream function, defined as:

u = _--%• v = _¢ (£)
By ' _x

To obtain an expression for _(_), the velocity profile of the

incoming stream at a distance y = L must be known. The distance L is

defined such that the incoming stream is unaffected by the existence of

the reattachment wall for y > L; that is, u = 0 for y > L and u is

positive for y < L. Actually u will be slightly negative for y > L,

as the fluid is being entrained into the mixing layer from the separated

region, and u is positive for y < L because of the wall. The value
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of L will be obtained a posteriori from the solution of the flow field.

A study of the mixing layer solution of reference i shows that the stream-

wise velocity distribution can be quite accurately represented by the

expression

v(x, L) = -voe-_x (3)

From the definition of L

u(x,_) = o (4)

and

>u(_, =)
= o (>)

_y

The vorticity, g(_), may be evaluated at any boundary for it is

constant along a streamline. In the present _:tudy, the vorticity is

evaluated along the boundary at y = L. The _'orticity distribution cor-

responding to the velocity profile of equation (3) and to condition (5)

is derived in the following manner. From equ_tion (3),

dv Zvoe-_X (6)_y=L - d.x -

To express equation (6) in terms of 4, we wr:te equation (3) as

d_ -voe -_:Vy= L = _ _ =

When the above equation is integrated to sati;fy the definition of the

dividing streamline, 4(0, L) = O, (see ref. I there results the

relationship,

#(_, T,) Vo= 7 (l - e-_) (7)

Equation (6) is now rewritten with the aid of equation (7) as

r=T,(V) = ZVo - _2# (8)

Equation ($) shows the relationship between tle vorticity and the stream

function at y = L. Vorticity, however, is c(nstant along a streamline

throughout the flow field. Equation (8)_ therefore, is applicable for

the entire inviscid region.
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The inviscid flow equation (i) and the complete boundary conditions
can nowbe written for 0 < x < _ and 0 < y < L as:

_2___¢+_2_ Z2_ + VoZ = o (9)
_x 2 _y2

_(0,y) = o (lO)

A
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©

1

,(_, o) = o

9(x, L) = -_ (I-v° e -hx)

i_(x, y)q < M

(ll)

(7)

(12)

where M is an arbitrarily large positive number and equation (12)

expresses the bounded condition. The solution of the above boundary value

problem is obtained by the Laplace transform method as follows.

The Laplace transforms of the stream function are first defined as

(13)

The transforms of the boundary conditions (Ii), (7), and (12) are also

needed in the course of the solution. These are, respectively,

m(s, o) = o (lla)

_(s, L) = Vos(_ + _) (Ta)

and

Im(s, Y) l < N for all s > 0 (12a)

where N is another arbitrarily large positive number. When the Laplace

transformation is performed twice in equation (9) and the boundary con-

ditions (i0) and (lla) are applied_ the following equation results.
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x(s,z) = A(z)+ B(s)-(Vo:/S_,)
K2 + z2 (:4)

where

= sa _ _2 (:5)

and A(z) and B(s) are unknown but particular functions of z and s,

respectively. An inverse Laplace transformation of equation (14) with the

aid of boundary condition (7a) yields

_o L
i _Vo sin_Ky i sin Ky Esin K(L - _)]A(_)d_

ds, y) = sin_ Ls(s + _)

1 _o_Vo_ sin K_y (l - cos KL) + _ sin K[. [sin K(y - _)]A(_)d_sKa

A

5

]

voh sin mL (i - cos <y)_ (16)
sK2 J

Now, in the above equation, the integrals which include the unknown

function A(_) in the integrand will be evaluated with the aid of the

bounded condition (12a). Equation (16) shows that the first term on the

right-hand side of the equation, i/sin KL, becomes _ when

x = + n_ (17)
- L

where n = O, i, 2, .... From equations (15) and (17), this means

that I/sin KL becomes _ when

s -- -4\ _)
(:]_8)

The boundary condition (12a) implies that th_ function q0(s, y) m_st be

bounded for all values of s > 0. It is, therefore, necessary that the

function in the braces in equation (16) be z_ro when s = 4(n_/L)_ + _2

in order to satisfy the bounded condition (l_:a). The integral with the

unknown integrand, therefore, becomes
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Yl n_ (L- _)]A(_)d{ - n_v° _ _[i- (-i) n]
sin _- L ((nx/L)2 _(n_/L) 2 + h2

+ l }
(19)

Finally, the complete inverse transformation of equation (16) is obtained

by finding the residues at all the single poles for s < O. The solution

of the boundary-value problem, equation (9) with its boundary conditions,

is thus obtained and is

9(X, Y) = coth hL (sinh hLY) + 1 - cosh kLY
voL kL hL

- --Ye_(-_u<)
XL

oo

XL( sin n_Y) exp[-J(n_) 2-2_n_[ (_)_ + (_)_]
n=l

. (xs)_×] (2o)_

The value of hL is found by satisfying condition (4) with the aid

of the solution, equation (20). At y = L, from the continuity equation,

u, if other than zero, is a monatonically increasing function of x with

u(O, L) = 0 and a maximum at x = _. Thus, condition (4) can be satisfied

for all x if one sets u(_, L) = O. Equation (20) can be used to show

that

U(OO, L) 1
= (21)

v o sinh XL

The velocity components, u(x, y) and v(x, y), were found to remain

practically constant for lu(_, L)/vol < 0.01. Thus, condition (4) can

be considered to be satisfied when u(_ L)/v o = 0.01, and from equation

(21) _L is found to be 5-3. In subsequent numerical work

hL : 5-3 (22)

is used.

A study of reference i shows that h in equation (3) can be expressed

quite accurately by

_ (23)
h = 2.222 Z

_Equation (I) can also be solved by the method of separation of

variables (see appendix).



Thus, for a given Re and Z, L and _ can be readily determined from
equations (22) and (23).

The velocity and pressure distributions along the wall, obtained from
equation (20), are shorn in figure 3.

BOUNDA/YYLAYERANDHEAT-TRANSFERANALYSIS

To evaluate the heat transfer along the wall by conventional boundary-
layer theory one must first investigate the effects of the vorticity and

the enthalpy gradient of the inviscid region on the boundary-layer solu-

tion. The absolute magnitude of the vorticit_" interaction parameter

(ratio of average vorticity in the inviscid region to that in the boundary

layer) was estimated to be less than 0.i for 0 < X < i and Re > 104 .

Classical boundary-layer theory can be applied with good engineering

accuracy when the interaction parameter is of this order of magnitude

(ref. 5)- The effect of an enthalpy gradient in the inviscid region on

the thermal boundary layer will be about the same as that of the inviscid

vorticity on the momentum boundary layer.

The present study concentrates on the re_Atachment zones that may

exist on a hypersonic vehicle. The heat-transfer analysis (an approxima-

tion) is based on the theory of a highly cooled boundary layer for hyper-

sonic blunt bodies, developed in reference 6, and the pressure and velocity

distributions obtained in the preceding section.

A typical heat-transfer variation near tle reattachment point is

shown in figure 3- In view of the drastic va]iation of the local heat

transfer within the small distance L, which Is of the order of the mixing

layer thickness, an average heat transfer in lhis zone is of greater

engineering interest than the local heat transfer shown in figure 3- The

reattachment zone is defined as that area of the wall along which flow

readjustment takes place and is defined two-dimensionally by 0 < X < !.

The average heat transfer at the reattachment zone was calculated for

several pressures in the separated region and resulted in development of

the following semiempirical expression

2_3 /apr_2 /3pt_7_ v_ (ht- h_)<0.76 + 1 411 P_tt_qw,r (24)

for 0.i ! Pe/Pt _ 0.5. To express the heat tlansfer in terms of the

fluid properties at the outer edge of the mixing layer, the following

approximations are made:

A
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From reference 6:

From reference I for Pr

Pt
OtW t = (Oe_e) Pe

close to i:

ht - hw ~ Vo _ 0.587
he - hw Ue

Equation (24) now becomes, with the aid of equations (22) and (23),

qw_rPrZ = 0"0463 PrZ/SReS/_ _Pe_-Z/m _ _Nu r = (h e _ hw)_ e kPt) 0.76 + 1.411 Pe

(25)

The pressure ratio Pe/Pt can be obtained from the assumption of an

isentropic compression along the dividing streamline of the mixing layer
as shown in reference 4. It should be remembered that the area of the

reattachment zone varies with Re.

Sometimes, it may be desired to calculate the average heat transfer

to an area which is a bit larger than the reattachment zones, but includes

it. From figure 2 and the definition of L one can see that the pressure

along the walls is essentially constant for x > L. Hence, the average

heat transfer for L < x _ x o is readily found to be

0.0_26 prl/aRe3/4

NU(L < x _ xo) 0.2922(Xo/Z)I/2ReZ/_ + I
(2d)

A weighted average of equations (25) and (26) would give the average heat

transfer near the reattachment point for xo > L.

DISCUSSION AND CONCLUDING REMARKS

There are no experimental data available, to the authors' present

knowledge, which could be used directly to compare the above theory.

However, a rough comparison can be made with the experimental results of

reference 3 in which an average heat transfer for Xo/Z = 0.05 was

measured for a separated laminar boundary layer reattaching at an angle

of about 45 ° . The experimental conditions of reference 3 were used to

calculate the average heat transfer which was found to be within i0

percent of the measured value.
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The present analysis is for the normal reattachment only and therefore
its comparison with the experimental result for the 45° reattachment angle
lends only rough support. It is doubtful, however, that the variation of
the reattachment angle between 45° and 90° would change the heat-transfer
result drastically.

It is interesting to investigate the dependenceof the average
laminar heat transfer on Reynolds number. Equations (25) and (26) indi-
cate that the Nusselt numbervaries with Re3_4 in the reattachment zone
and with a slightly smaller power of Re outside this zone. Thus, the
average heat transfer for a given xo _ L varies between Re_12 and
Re3j_, the exact value depending on xo and Re. It is worth noting that
the length of the reattachment zone, L, varies inversely with ReiI2;
therefore, as Re increases, for a given xo _ L, the dependenceof the
average heat transfer on Re decreases.

Finally, one can makean approximate comparison of the heat transfer
at the stagnation point of a hypersonic vehicle with that at a probable
reattachment zone. This comparison showedthat the heat transfer at the
reattachment zone could be as muchas two or more times that at the
stagnation point when Z/R_ I.

In an actual separated region, the boundmry-layer thickness at the
separation point will not be zero as assumedin reference i. For this
case, the present analysis remains unchanged through equation (22). The
heat-transfer equations (25) and (26), however, should be modified with
the proper values of _ and vo at y = L which maybe obtained from an
amalysis similar to that in reference 7.
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APPENDIX

SOLUTIONOFEQUATION(i) BY SEPARATIONOFVARIABLES

A
5
6
I

In a region defined by 0 < x < L and 0 < y < L the streamwise

velocity distribution of reference 1 can be closely approximated by

v(x, L) = -Vo sinh I(L - x) (AI)
sinh _L

Following the method outlined earlier the inviscid flow equation (i)

and its accompanying boundary conditions can be written for 0 < x < L and

0<y<L as

_a____#+ 82@ _ _2@ _ _v ° coth _L (A2)
8x2 8ya

_(x, o) = o (A3)

_(o,y) = o (A4)

_x

Vo [ eoshh(T,-x)]#(x, L) = -_- coth hL - si_ _Z (_)

Condition (12) has been replaced by the requirement that the fluid along

the wall at x = L be moving parallel to the x axis. That this is the

case is apparent from the symmetry of equation (i) and condition (4).

In terms of a new function z, where

Vo

#(x, y) = z(x, y) + _- coth _L
(AT)

the differential equation and its boundary conditions become

8az + 82z h2z (AS)
_x 2 _

z(x, o) = vo- -_ coth hL (A9)

Vo

z(O, y) = - -_- coth [EL (AIO)
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az (% y) = o (All)
_x

z(x,L) --- _o cosh_(L - _)
h sinh AL

(AI2)

This new function can be broken into the sum of three functions such that

(ll3)

The superposition principle can be used to break equations (AS) through

(AI2) into three simpler problems.

For Zl :

?2Z 1 = h2Z 1

zl(x, o) = Vo
Z

zl(0, y) = 0

_zl (T, y) --0
_x

zl(x, L) = 0

- -- coth hL

_2Z 2 : _2Z 2

z2(x, 0) = 0

z2(O, y) = Vo
- -_- coth ZL

_z2 (L, y) = 0
_x

z2(x, L) : 0

For za :

A

5
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For z3 :

V2z3 = _2z 3

z3(x, O) = 0

zs(0, y) = 0

_z_%_(L,y) = 0
8x

z_(x,z) = - Vocosh Z(Z - x)
l sinh ZL

Each of these problems is readily solved by the method of separation of

variables. Combining their solutions with the aid of equations (AI3) and

(A7) will give a solution to equation (I). For sufficiently large values

of hL (hL_ 5.3), this solution is equivalent to equation (20). That

this should be so can also be seen by examining equations (A!), (A2),

and (A6) which for large hL reduce to equations (3), (9), and (7)-
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Figure 3.- Inviscid velocity, pressure, and heat-transfer distributions

along the wall.
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